Теория Vol 12: Принятие решений и фракталы v 0.5


В предельно общем виде я упомянул, что процесс принятия решений можно рассматривать и не совсем традиционно. На данный момент в журнале Integrative Psychological and Behavioral Science уже вышла моя академическая статья "Evaluation of decision-making chains and their fractal dimensions", а по русски проще назвать её как "Фракталы и цепочка принятия решений".
Дело в том, что само принятие решений как цепочка последовательных действий (решений) для достижения конечной цели совершенно естественно накладывается на идею перемещения от одной условной точки к другой в некотором абстрактном пространстве. Точки, или ещё их можно назвать - узлы, отмечают момент принятия решения, а перемещение правильнее всего сравнить с вектором определённого направления и длины. 
При этом все эти теоретически-философские соображения и "проза жизни" прямо указывают на то, что оценка решений производится на основе нескольких критериев, которые правильнее всего воспринимать как координатные оси в нашем воображаемом пространстве решений. Ну и соответственно - если полагать их независимыми (это разумно как теоретически, так и практически), то такое пространство имеет размерность, которую по аналогии с математикой стоит называть топологической.
В таком случае, принятие решений действительно выглядит как цепь - ломаная линия. В статье я рассматриваю эти моменты весьма подробно, но фактически "маршрут" этой цепочки оказывается не только не полностью определённым (элементов случайности самого разного рода хватает), но и не очень точным, так как в реальных задачах часты критерии качественного вида, да ещё и не просто субъективные, но и подверженные эмоциональным влияниям.
Поэтому "зигзуги" реальной траектории могут сильно отличаться от идеально спланированной. Да и цепочкой эта траектория выглядит только с точки зрения "окончательного" решения на каждом шаге. А на самом деле обычно мы стараемся оценить последствия, строя и анализируя деревья возможных вариантов.
Но в конечном счёте оказывается что всё это имеет фрактальную природу. Причём как для чисто человеческого, так и машинного принятия решений (ИИ) - деревья и леса решений особенно. Но если с самим "процессом" генерации альтернатив и их "точной" оценки вопросов куда больше чем ответов, то вот отдельная характеристика процесса принятия решений - фрактальная размерность, является применимой и теоретически, и практически.
В этом посте я коснусь только двух моментов, но действительно важнейших:
  1. Фрактальная размерность дерева альтернатив всегда меньше топологической размерности пространства решений, и может быть даже единичной в случае двух критериев и бинарного дерева (то-есть решений типа Да/Нет). Та самая житейская мудрость про то что выбора на самом деле никогда и не было...
  2. Если рассматривать длинные цепочки решений, то они характеризуются фрактальной размерностью =2 при любой топологической размерности ≥2. Если перевести это с математического на житейский, то сколько бы критериев вы не использовали для сиюминутной оценки решений, для построения стратегических (долгоиграющих) решений, надо отобрать только два действительно важных и действительно независимых критерия оценивая их "долгосрочную перспективу".
    Вариант "блуждающей" траектории на плоскости
А в качестве анонса для последующих постов рекомендую почитать про фрактальные размерности и возможности их численной оценки по экспериментальным данным (Raw data).
Пример для размышления, так сказать

Комментарии